
Formulas

Note: this sheet focuses on Test 2/post Test 2 content. I recommend having the stuff you
would need in Test 1 memorized.

Capacitors

q(t) = Cv(t): charge across capacitor
i = C dv

dt  for constant C, current through capacitor
rewrite above to get v(t) = 1

C ∫ t

−∞ i(x) dx = v(t0) + 1
C ∫ t

t0
i(x) dx

P(t) = Cv(t) ⋅
dv(t)
dt : Power delivered to capacitors while charging

wc(t) = 1
2 Cv

2(t) J: Energy stored in a capacitor
wc(t) = 1

2C q2(t) J: Energy in terms of charge across plates
C = ϵ0A

d
: Capacitance formula

ϵ0 = 8.85 ⋅ 10−12F/m

In parallel: C1 + C2 + …, series, 1
C

= 1
C1

+ 1
C2

+ …

Capacitors store energy in electric field, cannot provide more energy than amount stored
within it
Voltage must be continuous, current can have discont.
Since current is dependent on dv/dt, blocks DC (open) at steady state, but will still store
energy

Inductors

Φ(t) = Li(t): Magnetic flux created in an inductor
L =

v(t)
di(t)
dt

V (t) = L
di(t)
dt

: Voltage from mag. field is proportional to r.o.c of current that created it
i(t) = 1

L
∫ t

−∞ v(x) dx = i(t0) + 1
L
∫ t

t0
v(x) dx: first term is about the history of the current,

second is about the interval of interest
Inductors: voltage leads current, capacitors: current leads voltage
P(t) = Li(t) ⋅

di(t)
dt

wL(t) = 1
2 Li

2(t): Energy stored in inductor
Inverse of capacitors in terms of laws
Current must be continuous, voltage can have discont.
Inductors short out DC (instead of opening) at steady state, but still store energy

First Order Circuits

Transient state & steady state, behaves like DC in steady state
Expo shape for V and I in transient, constant in steady
To solve:

Find expression for voltage/current for transition period (while in transience)
Find time constant τ  defining how long circuit will be transient
Find initial condition (for cap: VC(0−) = VC(0+) for ind: IL(0−) = IL(0+))
Find steady state values
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General form of solution: dx(t)
dt

+ ax(t) = f(t)

At t = τ , x(t) = 0.368K2 (drops to 0.368 times initial value, assuming no excitation i.e K1 = 0)

Mathematical Approach

RL Circuit:
τ = L

RTh

Steady state is ~t > 5τ

Circuit Analysis Approach

This will require a first order DE

x(t): voltage or current
f(t)/A: excitation, some voltage or current source
Sol. must be in form x(t) = xp(t) + xc(t), xp is particular solution, xc is complementary
solution
Start with constant excitation case, f(t) = A where A is DC current/voltage. This gives
xp(t) = K1

A
a

 with const. K1

Complimentary solution is solution to homogenous equation dx(t)
dt + ax(t) = 0 (comp.

solution is solution without external excitation and only internal conditions), leads to
xc(t) = K2e

−at with some const. K2

Therefore x(t) = A
a

+ K2e
−at, or x(t) = K1 + K2e

− t

τ

Where K1/ Aa  is the steady-state solution, value of x(t) when t → ∞. Depends on excitation
A

K1 is the steady state value, where x(t) will settle. K2 is difference between initial and
steady-state value
xc is based on initial conditions
τ  is the time constant

Use KVL/KCL to find expression for V/C somewhere in form dx(t)
dt

+ ax(t) = A

Use i = C dv
dt  or L =

v(t)
di(t)
dt

Try general solution x(t) = K1 + K2e
− t

τ

Equate resulting constant/expo terms to find K1, τ

Find K2 by using initial cond. VC(0−) = VC(0+)/IL(0−) = IL(0+)

RC Circuit:
τ = RThC

i(t) = Vs

R e− t

τ

v(t) = Vs (1 − e− t
τ ) where Vs is steady state voltage

Assume solution in form x(t) = K1 + K2e
− t

τ

Find either VC(0−) or iL(0−)

Assuming circuit is at steady state before t=0
Capacitor -> open, inductor -> short, solve for value

Find x(0+)
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Second Order Circuits

Will be of form d
2x
dt2 + a1

dx(t)
dt + a2x(t) = f(t)

Solution will be of form x(t) = xp(t) + xc(t), particular and complementary solution
xp is with constant excitation, sol: xp(t) = A

a2

xc is with no excitation. We assume solution = est for const s, find first/second deriv, sub in,
get characteristic eq s2 + a1s + a2 = 0

Solve quadratic eq s =
−a1±√a2

1−4a2

2a , if discriminant < 0, let s = α + jω,α = − a1
2 ,ω =

√4a2−a2
1

2 ,
write solution as xc(t) = C1e

(a+jω)t + C2e
(a−jω)t, otherwise xc(t) = C1e

s1t + C2te
st

Initially, will be overdamped (discriminant > 0)
Then we get two eqs x(0) = K1 + K2,

dx(t)
dt

|t=0 = K1s1 + K2s2

How to solve

Alternatively
- Use physical terms a1 = 2ζω0 and a2 = ω2

0, match coefficients instead of characteristic eq,
solve directly
- d

2xc(t)
dt2 + 2ζω0

dxc(t)
dt

+ ω2
0xc(t) = 0

Note due to continuity of current/voltage we can replace inductors with current source
I=steadystate and V for capacitors only at t = 0+

Complex Numbers

Complex numbers (rect): z = a + jb

Complex numbers (polar): z = rejθ, r is real axis and j is complex
Euler's identity: ejθ = cos(θ) + j sin θ, alternative complex notation z = r cos θ + jr sin θ

Rect -> polar: r = √a2 + b2, θ = tan−1 b
a

First replace capacitor with voltage source V (0−), inductor I(0−)

Find x(∞)

Capacitor -> open, inductor -> short, solve x(t)|t>5τ

Find τ
Form thevenin equiv. at terminals of storage element, then use τ = RThC or the L one

Solve K1 = x(∞), K2 = x(0+) − x(∞)

Write the diff eq describing circuit for t>0
Find particular sol. xp(t) = A

a2
 (remember A = f(t))

Derive characteristic eq s2 + a1s + a2 = 0 (note in physical terms a1 = 2ζω0 and a2 = ω2
0)

Quadratic formula
2 real unequal roots = overdamped, equal roots = critically damped, complex roots =
underdamped

Overdamped: xc(t) = K1e
s1t + K2e

s2t = K1e
−(ζω0−ω0√ζ 2−1)t + K2e

−(ζω0+ω0√ζ 2−1)t

Critically damped: xc(t) = B1e
−ζω0t + B2te

−ζω0t (where s1 = s2 = −ζω0)
Underdamped: xc(t) = e−ζω0t[A1 cos(ω0√1 − ζ 2t) + A2 sin(ω0√1 − ζ 2t)]

x(t) = xp(t) + xc(t), use initial conditions (x(0),
dx(0)
dt ) to find coefficients

Remember x(0) = x(0+) = x(0−) because of continuity of voltage/current
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Polar -> rect: a = r cos θ, b = r sin θ

Complex conjugate of a + jb : –z = a − jb, z–z = a2 + b2

Addition/subt: Just add/subtract componentwise
Multiplication:

z1z2 = {

*note you should verify the polar angle is in the right quadrant
Division:

z1

z2
=

Sinusoidal and Complex Forcing Functions

x(t) = A cos (ωt + θ), A is amplitude, ω angular frequency (rad/s), θ phase angle
f = 1

T
, f=frequency, T=period

ω = 2πf = 2π
T

any point on one waveform happens before another = leads, otherwise = lags
sin(α + β) = sinα cosβ + cosα sinβ

sin(α − β) = sinα cosβ − cosα sinβ

cos(α + β) = cosα cosβ − sinα sinβ

cos(α − β) = cosα cosβ + sinα sinβ

sin(wt + π
2 ) = cos(wt)

cos(wt − π
2 ) = sin(wt)

cos(wt ± 180∘) = − cos(wt)

sin(wt ± 180∘) = − sin(wt)

To find phase diff:

Euler's identity (adapted): ejωt = cosωt + j sinωt

x(t) = Xme
j(ωt+ϕ) = Xmcos(ωt + ϕ) + jXm sin (ωt + ϕ), Xm is maximum voltage/current

(amplitude)
Put in your complex forcing function converted from sinusoidal, solve for a polar form
complex number, then use Euler to get the Re() part

Phasors

Ṽ = Vme
jθ (real part of v(t))

Can also be Ṽ = Vm∠θ (we can do this because we only need magnitude & phase)
x(t) = Xme

jθ[ejωt] → x(t) = X̃[ejωt] Sub this into KCL/KVL (same as doing with complex forcing

(a1a2 − b1b2) + j(a1b2 + a2b1) rect form

r1r2e
j(θ1+θ2) polar form

⎧
⎨⎩
( a1a2+b1b2

a2
2+b2

2
) + j( b1a2−a1b2

a2
2+b2

2
) rect form

r1

r2
ej(θ1−θ2) polar form

f must be the same
A must be positive
Both must be sin

Then just find diff between their phase θ
If we introduce sinusoidal func into a linear network, other variables will become
sinusoidal with same f
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func, ejωt optional)
Creates phasor eq, which is algebraic

Freq. domain is when there is no time term, only ω. Phasors transform time domain to freq.
domain.
Phasor angles are based on cos, transform needed for sin

Solving

Resistor:
Ṽ = ĨR: V/I are in phase
Inductor:
Ṽ = jωLĨ V/I are 90 deg out of phase (V leading)
Capacitor:
Ĩ = jωCṼ  V/I are 90 deg out of phase (I leading)

Z̃ = Ṽ

Ĩ
 unit: ohms

Z = |Z|∠θZ where |Z| = Vm

Im
, θZ = θv − θi

Z(ω) = R(ω) + jX(ω), R(ω) is resistive part, X(ω) is reactive part
Resistor:
Z = R or Z = R∠0°

Inductor:
Z = jωL or Z = ωL∠90°

Capacitor:
Z = 1

jωC
 or Z = 1

ωC
∠(−90°) or Z = − j

ωC

Series: Z0 + Z1 + ⋯ + Zn = Ztot

Parallel: 1
Z0

+ 1
Z1

+ ⋯ + 1
Zn

= 1
Ztot

Z is not a phasor, it represents only a complex number not a sinusoidal func
To Solve AC:

Y = 1
Z

Ỹ = Ĩ

Ṽ
 unit: siemens

∣ Time Freq

A cos (ωt ± θ) A∠(±θ)

A sin (ωt ± θ) A∠(±θ − 90°)∣Transform a set of diff. eqs in time domain to freq. domain
Solve for all unknown phasors
Transform phasors back

Express x(t) as a phasor
Find impedance of each element
Combine impedances, apply KVL/KCL to solve circuit
Solve for X̃
Convert back to x(t)
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Same stuff as Z
Opposite rules for series/parallel combinations

Summary:

For simple AC circuits, (eg. first order), use:

For more complex AC circuits (eg. multiple sources), use:

AC Power

Instantaneous power p(t) = v(t)i(t)

Average power P = VmIm
2 cos (θv − θi) or 1

T
∫ t0+T

t0
p(t) dt (note for the former both forcing

equations V , I must be in cos and Xm is peak measurement i.e A)
Purely reactive elements (capacitor, inductor) absorb no avg power (absorb at one point in
period, release at another)
For max. power transfer from source to load impedance ZL, ZL = Z ∗

Th = RTh − jXTh

(Conjugate of ZTh)

AC circuits with sinusoidal forcing functions
Use complex numbers to simplify analysis

AC circuits with complex forcing functions (go back up a level by taking the real part)
Use phasors to simplify analysis

AC circuits represented by phasors (go back up a level by multiplying by ejωt)

Ṽ = ZĨ

Series/parallel impedance rules
KCL/KVL
Voltage/current division
Anything else you would use for DC but in freq. domain

Nodal analysis
Loop/mesh analysis
Superposition
Source transformation
Thevenin/Norton's theorem
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